In Stochastic Mechanics there are several techniques to analyse the natural scatter of strains and stresses caused by the dispersion in the given loads and/or the structural parameters. The most general one is the Monte Carlo method. However, it must be recognized that is as well the most costly in computational terms. Nevertheless, this cost has becoming feasible with the advance in Computer Science, specially with the advent of parallel computing, due to the fact that a Monte Carlo calculation is intrinsically a task that can be performed in parallel.
The present report is intended to provide the reader an introduction to the Monte Carlo method in the context of Computational Mechanics. The technique is applied to the analysis of the uncertainty spread in a stamping process. The first chapter summarises the Monte Carlo method and its theoretical backgrounds. The second chapter is devoted to the case study, namely, the stochastic analysis of a square cup deep drawing problem. Finally, the basic equations governing the mechanical modelling of the stamping process are summarized in the appendix.
]]>